Sections 13.1–13.2 Vector-Valued Functions

Scalar and Vector Functions

Vector Functions Limit and Continuity of Vector-Valued Functions

Parametrizing Space Curves

Example

Calculus of Vector-Valued Functions

Derivative of Vector-Valued Functions Basic Rules of Differentiability Examples Smooth Curves The Unit Tangent Vector Integrals of Vector Functions

1 Scalar and Vector Functions

Joseph Phillip Brennan Jila Niknejad

Vector-Valued Functions

A $\underline{vector\ function}$ (or $\underline{vector\ valued\ function}$) is a function whose output is a vector.

For example, a vector function $\vec{r}:\mathbb{R}\to\mathbb{R}^3$ has the form

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}$$

where the independent variable t is a scalar in \mathbb{R} and the dependent variable $\vec{r}(t)$ is a vector in \mathbb{R}^3 . The scalar functions f, g, and h are the **components** of the vector function \vec{r} .

Example 1: The vector function

 $\vec{\mathsf{r}}(t) = \langle \cos(t), \sin(t), 1 \rangle$

has domain $\mathbb{R} = (-\infty, \infty)$. Its range is a circle of radius 1 in the plane z = 1.

Limits and Continuity for Vector Functions

Let $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ be a function $\mathbb{R} \to \mathbb{R}^3$. The <u>limit</u> of $\vec{r}(t)$ as $t \to a$ is defined component-wise:

$$\lim_{t\to a} \vec{r}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

The function \vec{r} is **continuous** at *a* if *f*, *g*, and *h* are all continuous at *a*.

Example 2: The components of the vector function

$$ec{\mathsf{r}}(t) = \langle f(t), \ g(t), \ h(t)
angle = \left\langle t, \ \mathsf{ln}(1+t), \ rac{1}{t-1}
ight
angle$$

are all elementary functions, so they are continuous on their domains, namely

$$(-\infty,\infty),$$
 $(-1,\infty),$ $(-\infty,1)\cup(1,\infty).$

The domain of \vec{r} is the intersection of the three domains, namely

$$(-1,1)\cup(1,\infty)$$

and \vec{r} is continuous on its domain because f, g, h all are.

2 Parametrizing Space Curves

Joseph Phillip Brennan Jila Niknejad

Space Curves

If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then the curve C in \mathbb{R}^3 with parametric equations x = f(t), y = g(t), z = h(t) is called the **space curve** parameterized by \vec{r} .

Example 3: Describe the space curves:

(1)
$$\vec{r}(t) = \langle t, 1+t, 1-t \rangle$$
: C is a line
(11) $\vec{r}(t) = \langle \cos(t), \sin(t), t \rangle$ for $t \ge 0$: C is a helix
(111) $\vec{r}(t) = \langle t \cos(t), t, t \sin(t) \rangle$ for $t \ge 0$: C is a "conical spiral

Space Curves and Parametrizations

Important Note: A single space curve can be parameterized by infinitely many different vector functions! (We've already seen this with lines.)

For example, $\langle \cos(t), \sin(t), t \rangle$ $\langle \cos(3t), \sin(3t), 3t \rangle$ all parametrize the same helix. $\langle \cos(t^3), -\sin(t^3), -t^3 \rangle$

When studying curves, we often want to distinguish between properties that are **extrinsic** (those that depend on the parametrization) and those that are **intrinsic** (which depend only on the curve itself).

(The length and curviness of the road are intrinsic properties; how fast you are going on it is extrinsic.)

Parametrizing Intersections of Surfaces

Example 4: Find a vector function $\vec{r}(t)$ that parameterizes the curve of intersection of the cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the plane x + y + z = 1.

Solution: Start by parametrizing the cylinder as

 $x = a\cos(t), \quad y = b\sin(t), \qquad 0 \le t \le 2\pi.$

Then use the equation of the plane to find z:

$$z = 1 - x - y = 1 - a\cos(t) - b\sin(t)$$
.

Final answer:

 $\vec{r}(t) = \langle a\cos(t), b\sin(t), 1-a\cos(t)-b\sin(t) \rangle.$ This is not the only parametrization!

Note: The intrinsic equations $x^2/a^2 + y^2/b^2 = 1$ and x + y + z = 1 can be recovered from $\vec{r}(t)$ by eliminating the parameter *t*.

3 Calculus of Vector-Valued Functions

by Joseph Phillip Brennan Jila Niknejad

Derivatives of Vector-Valued Functions (Section 13.2)

Given a vector function $\vec{r}(t)$ in \mathbb{R}^2 or \mathbb{R}^3 , the **derivative** of $\vec{r}(t)$ is

$$\vec{r}'(t) = \frac{d\vec{r}}{dt} = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

If r(t) is the position of an object at time t, then r'(t) is its velocity.
Provided that r'(t) ≠ 0, it is tangent to the curve parametrized by r.

y Joseph Phillip Brennan Jila Niknejad

Therefore, the tangent line to the curve of $\vec{r}(t)$ at t = a can be parametrized by the vector function

$$\vec{\mathsf{L}}(t) = \vec{\mathsf{r}}(a) + t \, \vec{\mathsf{r}}'(a).$$

Differentiability and Basic Differentiation Rules

Derivatives are computed **component-wise**. If $\vec{r}(t) = \langle f(t), g(t) \rangle$ then

$$ec{\mathsf{r}}'(t) = \langle f'(t), \ g'(t)
angle$$

so \vec{r} is differentiable at t if both f and g are. (The same is true for vector functions in \mathbb{R}^3 , or for that matter \mathbb{R}^n .)

Differentiation rules of single-variable calculus work for vector functions:

$$\frac{d}{dt} \left(\vec{r}(t) + \vec{s}(t) \right) = \vec{r}'(t) + \vec{s}'(t) \qquad \text{(sum rule)}$$
$$\frac{d}{dt} \left(c\vec{r}(t) \right) = c\vec{r}'(t) \qquad \text{(constant multiple rule)}$$
$$\frac{d}{dt} \left(\vec{r}(p(t)) \right) = \vec{r}'(p(t))p'(t) \qquad \text{(Chain Rule)}$$

where \vec{r}, \vec{s} are <u>vector-valued functions</u>, *c* is any <u>scalar</u>, and *p* is any <u>scalar-valued function</u>.

Product and Quotient Rules for Vector Functions

There are three product rules for vector-valued functions:

Scalar Product Rule:
$$\frac{d}{dt}(f(t)\vec{r}(t)) = f(t)\vec{r}'(t) + f'(t)\vec{r}(t)$$

Dot Product Rule:
$$\frac{d}{dt}(\vec{r}(t)\cdot\vec{s}(t)) = \vec{r}'(t)\cdot\vec{s}(t) + \vec{r}(t)\cdot\vec{s}'(t)$$

Cross Product Rule:
$$\frac{d}{dt}(\vec{r}(t)\times\vec{s}(t)) = \vec{r}'(t)\times\vec{s}(t) + \vec{r}(t)\times\vec{s}'(t)$$

for any vector functions $\vec{r}(t)$ and $\vec{s}(t)$ and any scalar function f(t).

There is one **quotient rule** for the quotient of a vector function by a scalar function.

$$\frac{d}{dt}\left(\frac{\vec{r}(t)}{f(t)}\right) = \frac{f(t)\vec{r}'(t) - f'(t)\vec{r}(t)}{f(t)^2}$$

(Reminder: You can't divide by a vector function!)

Example 1 and A Nifty Fact About Vector Functions

Example 1: Let $f(t) = e^{2t}$ and $\vec{r}(t) = \langle t, t^2, t^3 \rangle$. (a) $\frac{d}{dt}(\vec{r}(t)) = \langle 1, 2t, 3t^2 \rangle$ (b) $\frac{d}{dt}(f(t)\vec{r}(t)) = \underbrace{2e^{2t}\langle t, t^2, t^3 \rangle}_{f'(t) \quad \vec{r}'(t)} + \underbrace{e^{2t}\langle 1, 2t, 3t^2 \rangle}_{f(t) \quad \vec{r}'(t)}_{f(t) \quad \vec{r}'(t)}$ $= e^{2t}\langle 2t + 1, 2t(t + 1), t^2(2t + 3) \rangle$ (c) $\frac{d}{dt}(\vec{r}(f(t))) = \underbrace{2e^{2t}\langle 1, 2e^{2t}, 3e^{4t} \rangle}_{f'(t)}_{\vec{r}'(f(t))}$

Example 2: $\vec{r}'(t) \perp \vec{r}(t)$ for all t if and only if $\|\vec{r}(t)\| = c$. <u>Solution:</u> $\frac{d}{dt} (\|\vec{r}(t)\|^2) = \frac{d}{dt} (\vec{r}(t) \cdot \vec{r}(t)) = 2\vec{r}'(t) \cdot \vec{r}(t)$. Thus $\vec{r}'(t) \perp \vec{r}(t)$ if and only if $\vec{r}'(t) \cdot \vec{r}(t) = 0$ if and only if $\frac{d}{dt} (\|\vec{r}(t)\|^2)$ is zero if and only if $\|\vec{r}(t)\|$ is a constant. An example of such curve in \mathbb{R}^2 is a circle and in \mathbb{R}^3 is any curve on an sphere: Link

Smooth Curves

- The vector $\vec{r}'(t)$ is tangent to the curve C parametrized by $\vec{r}(t)$
- The tangent line to C at t = a can be parametrized as

$$\vec{\mathsf{L}}(t) = \vec{\mathsf{r}}(a) + t\,\vec{\mathsf{r}}'(a)$$

Accordingly, we say that C is **smooth** on an interval I if $\vec{r}'(t)$ is continuous and nonzero on I (except possibly at the endpoints of I).

Example 3: Let $\vec{r}(t) = \langle t^5, t^2 \rangle$, so that $\vec{r}'(t) = \langle 5t^4, 2t \rangle$. This curve is **not** smooth at t = 0, because $\vec{r}'(0) = \vec{0}$.

The Unit Tangent Vector

If a smooth curve $\mathcal C$ is parametrized by $\vec r(t)$, then the vector function

$$\vec{\mathsf{T}}(t) = \frac{\vec{\mathsf{r}}'(t)}{\|\vec{\mathsf{r}}'(t)\|}.$$

is called the unit tangent vector.

- Note that the curve must be smooth (i.e., $\vec{r}'(t) \neq \vec{0}$) for $\vec{T}(t)$ to exist.
- $-\vec{T}(t)$ is also a unit tangent vector.

Example 4:

Integrals of Vector Functions (Optional)

Like differentiation, integration of a vector function is defined **component-wise**:

• The indefinite integral of $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is

$$\int \vec{r}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle$$

(The integration constants ("+C") for each component need not be the same.)

• The **definite integral** of $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is

$$\int_{a}^{b} \vec{r}(t) dt = \left\langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right\rangle$$

Determining Position from Velocity (Optional)

Common application: Given the velocity $\vec{r}'(t)$ of a particle at time t and the position $\vec{r}(0)$ at time t = 0, determine the position function $\vec{r}(t)$.

Example 5: Given $\vec{r}'(t) = \langle t, \cos(t), \sin(t) \rangle$, find $\vec{r}(t)$ if $\vec{r}(0) = \langle 0, 0, 0 \rangle$. Solution: The indefinite integral of $\vec{r}'(t)$ is

$$\vec{r}(t) = \int \vec{r}'(t) dt = \left\langle \frac{t^2}{2} + C_1, \sin(t) + C_2, -\cos(t) + C_3 \right\rangle$$

Now solve for C_1 , C_2 , C_3 using initial position:

 $\vec{r}(0) = \langle 0, 0, 0 \rangle = \langle C_1, C_2, -1 + C_3 \rangle \implies C_1 = 0, C_2 = 0, C_3 = 1.$

Therefore,

$$ec{\mathsf{r}}(t) = \left\langle rac{t^2}{2}, \, \mathsf{sin}(t), \, 1 - \mathsf{cos}(t)
ight
angle$$