Sections 13.1–13.2 Vector-Valued Functions

[Scalar and Vector Functions](#page-1-0)

[Vector Functions](#page-2-0) [Limit and Continuity of Vector-Valued Functions](#page-3-0)

[Parametrizing Space Curves](#page-4-0)

[Example](#page-7-0)

[Calculus of Vector-Valued Functions](#page-8-0)

[Derivative of Vector-Valued Functions](#page-9-0) [Basic Rules of Differentiability](#page-10-0) **[Examples](#page-12-0)** [Smooth Curves](#page-13-0) [The Unit Tangent Vector](#page-14-0) [Integrals of Vector Functions](#page-15-0)

 [Scalar and Vector Functions](#page-1-0)

Vector-Valued Functions

A **vector function** (or **vector-valued function**) is a function whose output is a vector.

For example, a vector function $\vec{r} : \mathbb{R} \to \mathbb{R}^3$ has the form

$$
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}
$$

where the independent variable t is a scalar in $\mathbb R$ and the dependent variable $\vec{r}(t)$ is a vector in \mathbb{R}^3 . The scalar functions f , g , and h are the components of the vector function \vec{r} .

Example 1: The vector function

 $\vec{r}(t) = \langle \cos(t), \sin(t), 1 \rangle$

has domain $\mathbb{R} = (-\infty, \infty)$. Its range is a circle of radius 1 in the plane $z = 1$.

Limits and Continuity for Vector Functions

Let $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ be a function $\mathbb{R} \to \mathbb{R}^3$. The <u>limit</u> of $\vec{r}(t)$ as $t \rightarrow a$ is defined component-wise:

$$
\lim_{t\to a} \vec{r}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle
$$

The function \vec{r} is **continuous** at a if f, g, and h are all continuous at a.

Example 2: The components of the vector function

$$
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = \left\langle t, \ln(1+t), \frac{1}{t-1} \right\rangle
$$

are all elementary functions, so they are continuous on their domains, namely

$$
(-\infty, \infty),
$$
 $(-1, \infty),$ $(-\infty, 1) \cup (1, \infty).$

The domain of \vec{r} is the intersection of the three domains, namely

$$
(-1,1)\cup(1,\infty)
$$

and \vec{r} is continuous on its domain because f, g, h all are.

 [Parametrizing Space Curves](#page-4-0)

Space Curves

If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then the curve $\mathcal C$ in $\mathbb R^3$ with parametric equations $x = f(t)$, $y = g(t)$, $z = h(t)$ is called the **space curve** parameterized by \vec{r} .

Example 3: Describe the space curves:

(I) $\vec{r}(t) = \langle t, 1+t, 1-t \rangle$: C is a line (II) $\vec{r}(t) = \langle \cos(t), \sin(t), t \rangle$ for $t \geq 0$: C is a helix (III) $\vec{r}(t) = \langle t \cos(t), t, t \sin(t) \rangle$ for $t \geq 0$: C is a "conical spiral"

Space Curves and Parametrizations

Important Note: A single space curve can be parameterized by infinitely many different vector functions! (We've already seen this with lines.)

For example, $\,\,\langle {\rm cos}(3t),\,{\rm sin}(3t),\,3t\rangle$ all parametrize the same helix. $\langle \cos(t), \sin(t), t \rangle$ $\langle \cos(t^3), -\sin(t^3), -t^3 \rangle$

When studying curves, we often want to distinguish between properties that are **extrinsic** (those that depend on the parametrization) and those that are *intrinsic* (which depend only on the curve itself).

(The length and curviness of the road are intrinsic properties; how fast you are going on it is extrinsic.)

Parametrizing Intersections of Surfaces

Example 4: Find a vector function $\vec{r}(t)$ that parameterizes the curve of intersection of the cylinder $\frac{x^2}{x^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{dy}{b^2} = 1$ and the plane $x + y + z = 1$.

Solution: Start by parametrizing the cylinder as

 $x = a \cos(t), \quad y = b \sin(t), \quad 0 \le t \le 2\pi.$

Then use the equation of the plane to find z:

$$
z = 1-x-y = 1 - a\cos(t) - b\sin(t).
$$

Final answer:

 $\vec{r}(t) = \langle a \cos(t), b \sin(t), 1 - a \cos(t) - b \sin(t) \rangle$. This is not the only parametrization!

Note: The intrinsic equations $x^2/a^2 + y^2/b^2 = 1$ and $x + y + z = 1$ can be recovered from $\vec{r}(t)$ by eliminating the parameter t.

 [Calculus of Vector-Valued Functions](#page-8-0)

Derivatives of Vector-Valued Functions (Section 13.2)

Given a vector function $\vec{r}(t)$ in \mathbb{R}^2 or \mathbb{R}^3 , the **derivative** of $\vec{r}(t)$ is

$$
\vec{r}'(t) = \frac{d\vec{r}}{dt} = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}
$$

If $\vec{r}(t)$ is the position of an object at time t, then $\vec{r}'(t)$ is its velocity. Provided that $\vec{r}'(t) \neq \vec{0}$, it is tangent to the curve parametrized by \vec{r} .

$$
\vec{r}(a)
$$
\n
$$
\vec{r}(a)
$$
\n
$$
\vec{r}(b)
$$
\n
$$
\vec{r}(c)
$$
\n
$$
\vec{r}(a)
$$
\n
$$
\vec{r}(b)
$$
\n
$$
\vec{r}(c)
$$
\n
$$
\vec{r}(a)
$$
\n
$$
\vec{r}(b)
$$
\n
$$
\vec{r}(c)
$$
\n

$|d||D||>|X||-||H||+$

Therefore, the tangent line to the curve of $\vec{r}(t)$ at $t = a$ can be parametrized by the vector function

$$
\vec{L}(t)=\vec{r}(a)+t\vec{r}'(a).
$$

Differentiability and Basic Differentiation Rules

Derivatives are computed **component-wise**. If $\vec{r}(t) = \langle f(t), g(t) \rangle$ then

$$
\vec{r}'(t) = \langle f'(t), g'(t) \rangle
$$

so \vec{r} is differentiable at t if both f and g are. (The same is true for vector functions in \mathbb{R}^3 , or for that matter \mathbb{R}^n .)

Differentiation rules of single-variable calculus work for vector functions:

$$
\frac{d}{dt}(\vec{r}(t) + \vec{s}(t)) = \vec{r}'(t) + \vec{s}'(t)
$$
 (sum rule)

$$
\frac{d}{dt}(\vec{r}(t)) = \vec{r}'(t)
$$
 (constant multiple rule)

$$
\frac{d}{dt}(\vec{r}(p(t))) = \vec{r}'(p(t))p'(t)
$$
 (Chain Rule)

where \vec{r}, \vec{s} are vector-valued functions, c is any scalar, and p is any scalar-valued function.

Product and Quotient Rules for Vector Functions

There are three **product rules** for vector-valued functions:

Scalar Product Rule:
$$
\frac{d}{dt}(f(t)\vec{r}(t)) = f(t)\vec{r}'(t) + f'(t)\vec{r}(t)
$$

Dot Product Rule:
$$
\frac{d}{dt}(\vec{r}(t) \cdot \vec{s}(t)) = \vec{r}'(t) \cdot \vec{s}(t) + \vec{r}(t) \cdot \vec{s}'(t)
$$

Cross Product Rule:
$$
\frac{d}{dt}(\vec{r}(t) \times \vec{s}(t)) = \vec{r}'(t) \times \vec{s}(t) + \vec{r}(t) \times \vec{s}'(t)
$$

for any vector functions $\vec{r}(t)$ and $\vec{s}(t)$ and any scalar function $f(t)$.

There is one quotient rule for the quotient of a vector function by a scalar function.

$$
\frac{d}{dt}\left(\frac{\vec{r}(t)}{f(t)}\right) = \frac{f(t)\vec{r}'(t) - f'(t)\vec{r}(t)}{f(t)^2}
$$

(Reminder: You can't divide by a vector function!)

Example 1 and A Nifty Fact About Vector Functions

Example 1: Let
$$
f(t) = e^{2t}
$$
 and $\vec{r}(t) = \langle t, t^2, t^3 \rangle$.
\n(a) $\frac{d}{dt}(\vec{r}(t)) = \langle 1, 2t, 3t^2 \rangle$
\n(b) $\frac{d}{dt}(f(t)\vec{r}(t)) = 2e^{2t} \langle t, t^2, t^3 \rangle + e^{2t} \langle 1, 2t, 3t^2 \rangle$
\n $= e^{2t} \langle 2t + 1, 2t(t + 1), t^2(2t + 3) \rangle$
\n(c) $\frac{d}{dt}(\vec{r}(f(t))) = 2e^{2t} \langle 1, 2e^{2t}, 3e^{4t} \rangle$

Example 2: $\vec{r}'(t) \perp \vec{r}(t)$ for all t if and only if $\|\vec{r}(t)\| = c$. $\underline{\text{Solution:}}~\frac{d}{dt}\left(\|\vec{r}(t)\|^2\right) = \frac{d}{dt}\left(\vec{r}(t)\cdot\vec{r}(t)\right) = 2\vec{r}'(t)\cdot\vec{r}(t).$ Thus $\vec{r}'(t) \perp \vec{r}(t)$ if and only if $\vec{r}'(t) \cdot \vec{r}(t) = 0$ if and only if d $\frac{d}{dt}(\|\vec{r}(t)\|^2)$ is zero if and only if $\|\vec{r}(t)\|$ is a constant. An example of such curve in \mathbb{R}^2 is a circle and in \mathbb{R}^3 is any curve on an sphere: $\overline{(\;\cdot\; \text{Link})}$ $\overline{(\;\cdot\; \text{Link})}$ $\overline{(\;\cdot\; \text{Link})}$

Smooth Curves

- The vector $\vec{r}'(t)$ is tangent to the curve $\cal C$ parametrized by $\vec{r}(t)$
- The tangent line to C at $t = a$ can be parametrized as

$$
\vec{L}(t) = \vec{r}(a) + t \vec{r}'(a)
$$

Accordingly, we say that $\mathcal C$ is smooth on an interval I if $\vec r'(t)$ is continuous and nonzero on I (except possibly at the endpoints of I).

Example 3: Let $\vec{r}(t) = \langle t^5, t^2 \rangle$, so that $\vec{r}'(t) = \langle 5t^4, 2t \rangle$. This curve is **not** smooth at $t = 0$, because $\vec{r}'(0) = \vec{0}$.

The Unit Tangent Vector

If a smooth curve C is parametrized by $\vec{r}(t)$, then the vector function

$$
\vec{\mathsf{T}}(t) = \frac{\vec{\mathsf{r}}'(t)}{\|\vec{\mathsf{r}}'(t)\|}.
$$

is called the unit tangent vector.

- Note that the curve must be smooth (i.e., $\vec{r}'(t) \neq \vec{0}$) for $\vec{T}(t)$ to exist.
- $\overrightarrow{\mathbf{p}}$ $\overrightarrow{\mathbf{T}}(t)$ is also a unit tangent vector.

Example 4:

Integrals of Vector Functions (Optional)

Like differentiation, integration of a vector function is defined component-wise:

• The indefinite integral of $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is

$$
\int \vec{r}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle
$$

(The integration constants ("+C") for each component need not be the same.)

• The definite integral of $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is

$$
\int_a^b \vec{r}(t) dt = \left\langle \int_a^b f(t) dt, \int_a^b g(t) dt, \int_a^b h(t) dt \right\rangle
$$

Determining Position from Velocity (Optional)

Common application: Given the velocity $\vec{r}'(t)$ of a particle at time t and the position $\vec{r}(0)$ at time $t = 0$, determine the position function $\vec{r}(t)$.

Example 5: Given $\vec{r}'(t) = \langle t, \cos(t), \sin(t) \rangle$, find $\vec{r}(t)$ if $\vec{r}(0) = \langle 0, 0, 0 \rangle$. Solution: The indefinite integral of $\vec{r}'(t)$ is

$$
\vec{r}(t) = \int \vec{r}'(t) dt = \left\langle \frac{t^2}{2} + C_1, \sin(t) + C_2, -\cos(t) + C_3 \right\rangle
$$

Now solve for C_1 , C_2 , C_3 using initial position:

 $\vec{r}(0) = \langle 0, 0, 0 \rangle = \langle C_1, C_2, -1 + C_3 \rangle \implies C_1 = 0, C_2 = 0, C_3 = 1.$

Therefore,

$$
\vec{r}(t) = \left\langle \frac{t^2}{2}, \sin(t), 1 - \cos(t) \right\rangle
$$